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STRESS INTENSITY FACTORS IN THE THIRD-STA
FAN DISK OF THE TURBINE ENGINE

INTRODUCTION

Several failures of the TF-30 turbojet engine used in the F-14 aircraft have been attri-
buted to the initiation and growth of fatigue cracks in the third-stage fan disk at the__ ‘dovetail
region shown in Fig. 1. It is generally believed that these cracks are associated with ah inter-
mittent high-frequency engine resonance and/or load fluctuations due to engine pOWgr. or speed
changes. Since the operational static load is already high, only moderate ﬂuctua'tioné are
required for crack initiation followed by fatigue growth. In either case, a reduction-in: the static
stress level extends fatigue life. To this end, an experimental stress analysis of the dovetall was
performed by Parks and Sanford(" using two-dimensional photoelastic models. The photoelastrc
analysis showed a stress concentration factor of 5.2 in the disk fillet. The high concentration of
tensile stress in the fillet plus the fretting action at the edge of the bearing surface are the two
primary factors affecting crack initiation. :

Fig. 1 — TF-30 third-stage blade/disk
dovetail region

Manuscript submitted April 3, 1978,
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Fatigue cracking occurs in a reproducible manner in numerous lugs on each disk. A typi-
cal disk removed from service was carefully examined at NRL, and cracks were observed in 15
of the 36 lugs. In each instance, the crack initiates at or near the junction of the fillet and bear-
ing area of the disk lugs as illustrated in Fig. 2. After initiation, the crack extends upward
across the lug untit it approaches the upper fllet, where a compressive stress field exists. At
this point the crack turns through an angle of 45 degrees and propagates across the upper region
of the lug as shown in Fig. 3, :

Fig. 2 — Typica! fatigue crack in a disk Fig. 3 — Final phase of crack extension
removed from service after the ¢rack turns

This report provides a fracture analysis of a crack as it extends from the initiation point
into the lug. Of particular interest is the stress-intensity factor or the strain energy release rate
at the crack tip as the crack propagates into the complex stress field associated with the dovetail
region. Knowing the stress intensity factor along the path of the crack will enable a prediction
to be made of the propagation life of the fatigue crack from the Paris® cyclic-growth telation-
ship

daldN = C AK", {1y

where da/dN is the incremental crack extension per cycle, AK is the range in stress imtensity
factor, and » and C are material constants.

To determine the stress intensity factor, two-dimensional photoelastic models 3.409 times
the size of the dovetail region of the disk were used. Artificial cracks were introduced in the
models by sawing. The cracks were extended incrementally along the known fracture path, and
isochromatic fringe patterns were recorded for each crack length.

The isochromatic patterns in the neighborhood of the crack tip indicated that the stress
field was of the mixed-mode type and that a far-field stress o, parailel io the crack was of
significant magnitude. As a method of determining the opening stress intensity factor X, and
the shearing-mode stress intensity factor K from isochromatic fringe loops under these condi-
tions was not available, it was necessary to develop a data-analysis procedure. This was accom-
plished by using a modified near-field solution for the central crack problem to gbtain a non-
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linear equation relating K,, K, and o, to the fringe order N and the fringe position (7, )
relative to the crack tip. Solution of this nonlinear equation and the extraction of K, Ky and
o, Was obtained using the Newton-Raphson iterative method combined with a least-squares
method to minimize error due to inaccuracies in measuring fringe parameters. ‘The; results
obtained for K, and K; were accurate to 10 to 15 percent based on individual -determinations
and to about 5 to 7 percent based on mean-value estimates when several determinations were -
made.

Results from the model analysis for K; and K were scaled to the prototipé-. pased ona
centrifugal load of 24,900 Ib (111 &N} applied to the prototype. An effective stress intensity

factor K,,,, related to K, and K, was determined as a function of crack length. -

EXPERIMENTAL PROCEDURE -

The experimental approach was similar to the approach used by Parks and Sanford™’ in
their photoelastic stress analysis. A complete description of the model geometry,. theiloading
fixture, and model manufacturing methods is contained in Ref. 1. The models.;tiséd in this
study were made from the same templates as employed by Parks and Sanford and"had ‘_<iﬁ_n.-7_‘plane
dimensions 3.409 times the prototype dimensions. RO

The models were fabricated from Homalite 100* sheets 0.255 in. (6.48 mm) thick. A
crack was simulated in the model by using a fine-pitched jewelers saw 0.018 in, (0.5 i) thick
with 40 teeth per inch. The crack tip was sharpened with a swiss jewelers file** with.¢ c_adius__of _
about 0.008 in. (0.2 mm). ‘ T TR T

The model was loaded in a sodium diffused-light polariscope, and isochromatic.fringe pat-
terns were photographically recorded. The crack was extended incrementally by sawing.and
filing; then the loading and photographing sequence was repeated. A total of 23.cemBinations
of load and crack length were photographed. b

Typical isochromatic fringe patterns obtained for three lengths of cracks are :il-lus'tr-éted in
Fig. 4. An enlargement of the fringe loops at the crack tip is presented in Fig. 5. Inspection of

¥

Fig. 4 — Typical isochromatic fringes
for crack extension in the disk
dovetail )

*G & L Industries, Wilmington, Delaware.
**Grobet Vallorbe No. 6 jewelers file.
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Fig. 5 — Enlargement showing details of the
{ringe loops st the crack tip

E

Fig. 6§ — Characteristic shape of upper
and jower ioops

m

b
ﬁ\ 4
8

these fringe patterns shows that the loop tilt angle 8, (defined in Fig. 6} and the maximum
radius r, associated with the fringe loops above ané below the crack line are not the same.
Thus the cracks are propagaling in g mixed-mode field with both K; and X affecting fatigue
crack extension.

METHODS OF ANALYSIS

A method 1o determine mixed-mode siress intensity factors from isochromatic fringe
loops has previously been developed by Smith and Smith'”. Their method, which neglects the
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nonsingular far-field stress o,,, can be applied only when the axes of the upper and lower
fringe loops lie along a common line. Examination of Fig. 5 indicates that this conditionis not
satisfied for the problem being considered here. For this reason it was necessary to extend the
method of analysis to include the o, term.

For a crack subjected to both tensile and shearing loads the stress field i
hood of the track tip can be approximated ™ as
8

G . .38
K, cos 2 [1 sin 2 sin ~~— 5

Tx = K” sin —

2 2 + cos — cos ——” o,,, ;if: :

2mr

1+sm£sm—3-0—

L] ]
+ K sin — cos—-cos-—-,m-‘-.

2 2

,-._ K; COS —

1 . (] 30 9 [} 30..
. —— = = == = h - = -
Ty T [K, sin 2 cos 2 cos ) + Ky cos > l sin 2 sin — :2-.

where the coordinates are measured from the crack tip. :
The maximum in-plane shear stress 7, is related to the Cartesian components of strﬂss by

Q@2r,)? = (o, —0')2+(21' )2, . -(3)

The stress-optic law in photoelasticity which relates the fringe order N to the nlaxlmum
in-plane shear stress is 2

27 = Nfolh, L@
where f, is the material fringe value and # is the model thickness. .

Substituting Eqs. (2) and (4) into (3) gives

(Nf,/h)? = 2—1‘; [(K, sin 6 + Ky cos 8)2 + (K, sin 8)7]

2
+ 22 gn 2 [K, sin #(1 + 2 cos 9)
21rr : ‘
+ K;(1 +200510+cos 0)) + a2 ()

The size and shape of the isochromatic fringe loops are related to K;, Ky, .and ¥ .
through Eq. (5). It is possible to use this relation in two ways — first, to assume that K,,. Ky,
and o, are known and to use Eq. (5) to determine the geometry of fringe loops. of & .givén

order or, second, to assume ‘the geometry of the fringe loop is known and to use. Eq.‘ 5) to
determine K;, Ky, and o,. o

Thus Eq. (5) forms the basis of all of the methods used to determine K, Ky, and. G'ax
from isochromatic fringe patterns. In this analysis three approaches were followed in develop-
ing solutions. In each approach the set of equations to be solved was nonlinear in.the un-
knowns K;, K, and o,. These equations were solved using the Newton-Raphson method as
applied to systems of equations®. Each of the approaches will be described. '

Classical Approach

(161;1 the first determination of K; and o, from symmetrical fringe loops, performed'by" :
Irwin™®, it was noted that, for closed fringe loops near the crack tip, a point exists where
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This point was assigned coordinates (r,,, #,). This relation gave Irwin a second equation to use
with a simplified form of Eq. (5} (Kj; terms eliminated) and enabled him to solve for K and
& 4 10 terms of the fringe arder N and the position parameters r, and 8,,.

This approach can also be used in the mixed-mode mode analysis by using information
from two loops in the near-fieid of the crack. Differentiating Eq. (5) with respect to 8, setting
8§ = @, and r = r,,, and using Eq. (6) gives

Ky Ky, o) = g.:; (KPsin28,, + 4K, Ky cos28,, — 3K} sin26,)
ol
2 o-ax . gm a »
+ sin —~ {K{cost,, + 2c0s28,,} — K;{2sin24,, + sind}}
Ty

&
+ % cos —i"i {EK Asingd,, +5in28,} + K;(2 + cos28,, + cosﬂmill

=0, &3]

where the coordinates 7, and @, define the point on any fringe loop which is farthest removed
from the crack tip, as illustrated in Fig. 6. Rewriting BEq. {5) in a form suitable for use with the
Newton-Raphson method gives
1
27r,,

20,

ek, Ky, 0,) = K, sin 8, + K;cos8,)0% + (K;sin 8,03

&
sin ?’” (K;stn 8, (1 +2cos6,)
Ty

+ Kyl +2cos?8, +cos 8,1+ ol — (N, f/m?=0, {8}
where N, is the fringe order corresponding to the point (r,, 8,).

When the classical approach is used, the stress intensity factors K; and X, and the remote
stress @ ,, are determined from isochromatic data taken from itwo points — one on each of two
fringes. In concept any two loops can be used; however, in practice more accurate results are
obtained if one fringe is taken from the set of loops above the crack line and the other fringe is
taken from the set of loops below the crack line.

Substituting the radii ,, and the angles 8, from these two loops into Eq. {7) gives two
independent relations in terms of the parameters of interest. The third equation is obtained by
using Eq. {(8) with data from either the upper or the lower loop. The three equations obtained
in this manner are of the form

FulKp Ky 04 =0,
JUK Ky o4 =0, (9}
g K, Ky a0 =10,

where the subscripts u and / refer to upper and lower {oops respectively.

Although Eqgs. (9) can be solved in closed form, the algebra becomes quite involved, and
a simpler approach using 2 numerical procedure based on the Newton-Raphson method was
employed. To describe the Newton-Raphson method, consider an arbitrary function h; of the
form

hk(K;, KH’ Tl = 0, (IG}
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where k& = 1, 2, and 3. If initial estimates are made for K;, Ky, and o, and substituted into
Eq. (10}, the equality is not satisfied, since the estimates are in error. To correct the estimates,
a series of iterative equations based on a Taylor series expansion of h, are ,writte;_lm_a_

Bhk ok, 8h,

AR+ || ARy Aoy, (11)
where the subscript / refers to the ith iteration step. AK,, AKj, and Ao, :sma= or ns to
the previous estimates. The corrections are determined so that (A,) 4, = 0, and hu Qan
gives o e

8hy, dhy ah, e
— | AK; + || Ak, + Aoy =—(): (12)
laKIjA I 9Ky |, i 30 o |, T ox ki

Applying Eqs. (12) to Egs. (9) and solving for the correction terms AK;, AKy
yields, in matrix notation,

-1
afu afu afll
BK; aK” aﬂox
by B VAV Y/
rol 18K 8Ky deu| B
o ag, 08, 08 “li
BK[ 3Ku a(rax ;

The corrected values of X;, Ky, and o, are given by
(K41 = (K)), + AK,,
(K)o = (K, + AKyy,
(C"ox)1+1 (U'ox) + Aoy,
The convergence of this method is rapid, and usually four or five iteratioﬁsﬁ.al!e:.:éﬁfﬁbi'ié.n”t.'
for obtaining precise estimates of K;, Ky, and ¢,. A computer program written in BASIC,

with a file name MXDMD4, was prepared to compute K;, Ky, and o, according to Eqs (13) o
and (14). This program is listed in Appendix A.

Selected-Line Approach

It is possible to simplify Eq. (5) by considering only the isochromatic data alo
defined by # = . Then Eq. (5) reduces to D

4 KH 4 K” T ox
+
21rr

(Nfy/h)? =

ax*

which is independent of K,;. Equation (1 5) can be written as

Nf,/h =+

il
+ 0,0l
r
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The negative sign is selected, because K;; < 0 for isochromatic intercepts with the § = 7 line.*
Consider two isochromatics Ny, > N,, which intercept the § = = line at positions r; and r, as
shown in Fig. 7 and select the minus-sign solution in Eq. (16}. Then

NiJfo 2Ky (17a}

Tox =7 h \,‘277‘."1

and
N K

"hf z - i% (17b)
Subtracting Eq. (17b) from Eq. (17a) to eliminate o, gives

Kyl dm _Nnn vy 18
b7 Jn-vn
\(\ﬁﬁ} is negative, since Ny > Njand r, > 7. Finally o, is obtained from Eq. {18) and Eq.
a) as

a-ox=__

Ny fo 2 Ky
- . 1
p TN (19}

Tox = —

N1 Nl
; (
B=x - {
‘Ff aargn \
a/ Fig. 7 — Isochromatic fringe orders NI aft N?
; ) N intersecting the line & =  {upper crack edge)

To determine K, reevaluate Eq. (5] with & = #/2 and obtain

(Kf + Xr[) + G'gx. {2{}}

(Nf(,/h)"’— - (K{ + Kj; \!ﬂ—

Equation (20) is quadratic in terms of X} thus

— Sy
b+ 4&8, a1

2a

K;=

*A similar development can be made when K > 0, except that the isochromatics interscet the lower edge
of the crack at § = — 7,
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where
a=1/2%r;
b=ao/mrs
¢ = (K}2mry + (Ky oo/~Jary) + 0 — (N3 fo/h)2

Note that N; and ry are defined in Fig. 7. The plus sign is selected in front of th 7}37Eq.
(21), since K; > 0. : o g

Least-Squares Approach

The least-squares approach fits Eq. (5) to the data at a number of arbitrary points over the
fringe field in the neighborhood of the crack tip using the unknowns K;, K, and ‘o, as the
fitting parameters. The fitting process is similar to that used in the classical approachi-in that the
Newton-Raphson method is employed; however the least-squares approach useés. ta-from k-
arbitrary points, where & > 3. : SETTT

Applying the iteration scheme suggested in Eq. (12) to k equations of the form- given in.
Eq. (8) results in an overdetermined set of linear equations in terms of the unknowns AKX,
AK, and Ao, of the form

dg; 0g 8 .‘
0K; 9Ky 8oy
& dg, 0dg O,
£ = —f0K; 8Ky 3o,

8l Bg, Og 08
3K, 9Ky 00,

For brevity rewrite the matrices in Eq. (23) as
lg] = [a] [AK].

It can be shown that [AK] in Eq. (24) can be determined in the least-squares sel.lsq;b
ing both sides from the left by [a]7, where [a]Tis the transpose of [al:

(al7 [g] = [a]" [a] [AK]

or

[d] = [c] [AK],
where

[4] = [a] T [g]
and

(el = {al7 [al.
Finally,

[AK] = [c]7! [4],

where [c]7! is the inverse of [c].
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The solution of Eq. (27) gives AK;, AK};, and Ao ., which are used to correct initial esti-
mates of K;, Ky, and o,, to obtain a better fit of the function g to the & data points. By use
of the matrix operations available in BASIC, a computer program with a file name MXDMDS3
was written to determine K, K, and o, using data from ten points over the fringe field.
This program is listed in Appendix B.

VERIFICATION OF METHODS

All three methods were verified and were found to give accurate results {to +0.1 per-
cent}, providing exact input data were used. The data required for verification were generated
by substituting selected vaiues of X, Ky, and o, into Eq. {5). The resulting expression was
then used to determine the fringe order N at specified {7, 8} pairs.

Analysis with real data is less accurate, because experimental errors will ocour in deter-
mining the  and # associated with the location of a point on an isochromatic fringe. Errorsin @
of +2 degrees and in r of +0.005 in. (0.13 mm) shouid be expected. The errars are primarily
due to difficulties in locating the crack tip at the end of the saw cut.

The classical approach is perhaps the most error prone of the three methods, since &,
must be determined for both the upper and lower loops. Considering the difficulty in locating
the crack tip and in locatling the point corresponding to r, on both isochromatic fringe loops,
errors in @, of x5 degrees may be anticipated. An example was run with compuier program
MXDMD4 such that #,, on the upper loop was increased by 5 degrees and &, on the lower
ioop was decreased by 5 degrees. The error in the predictions of K;, Ky, and o, was 13.9,
15.6, and 318 percent respectively.

The seclected-line, classical, and least-squares methods were compared by using the analyi-
ically generated point plot of the fringe paitern shown in Fig. 8. Measurements of », 8, and N
were faken from this point plot using the same techniques which are used with actuat photo-
elastic fringe patterns. The data with typical measurement errers were processed, and the
results of the error analysis are shown in Table 1. These results indicate that the leasi-squares
method with the program MXDMDS35 provided the most accurate estimates of X, and K,

ANALYSIS OF DATA

Negatives of the fringe patterns were proiected in a photographic enlarger onto the data
sheet shown in Fig. 9. The projected size of the image was approximately 10 times the actuat
model size. Five data points associated with each fringe loop were marked on the data sheet.
These data points were usually at the extremity of a fringe loop, where changes in » with @ are
small and measurement error is minimized. The scale distance {5 mm) from the negative was
marked on the data sheet.

Measurements were made with proportional dividers to determine the radius associated
with each data point. Values of angle 4, radius r, and fringe order N associated with ten to 40
data points were made from each negative of the isochromatic pattern.

These data were used as input for the MXDMD-5 program te determine X, Ky, and o .
Ten data poinis were used for each determination, five from an upper loop and five from a
iower loop., When more than ten data points were available, different combinations of data sets
were employed and several estimates of K, Ky, and o, were made. In these instances, aver-
ages of the individual determinations were taket. The mean values of X;, Ky, and o, are
presented in Table 2.

i
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0.5

Fig. 8 — Point plot of a mixed-mode isochromatic pattern influenced by a far-field s
o K, =319 psi Jin, K, = —293 psi N o = 355psi

Table 1 — Comparison of the three Methods
on the Basis of Typical Measurement Errors

Truc LeasI-Sqﬁares Method Selec!"éd-Line_. Method | Classical Method
Predicted | wy |Predicted| Predicted{ = ..o
Value Value Error (%) value | Error (0} 17 e [ETTO (%)
K, (psivin)| 318.974| 3175 0.5 304.8 4.5 298.4 | 6.4,
K, (psiv/in) [ —293.184] —297.1 1.3 —-308.2 5.1 —-308.0 '
o, (psi) 354.865| 3453 B 2.7 380.7 7.2 357.9

11
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Table 2 — Summary of Results for K K”, and
T for the Photoclastic Modei

Number P | Crack K, K, T |

ox* ol
Record No. of Load | Length N vy | ey T
Readings | (Ib) | (n.) (psiv/in.} | (psivin) | (psi) i
" Before Crack Turns
D-2-6 & 7 1 800 0.096 573 -569
D-2-8 &9 1 1000 0.096 693 -706
D-1-3 1 200 0.122 439 -216
D-1-4 1 200 | 0.185 475 -159
D-1-5& 6 5 200 0.241 348 -219
D-1-7 & 8 6 200 | 0.357 318 -285
D-1-9 & 10 7 200 0.466 512 -203
D-1-11 & 12 7 200 0.622 539 -281
D-1-13 & 14 5 200 | 0.710 549 -221
D-1-15 & 16 3 200 0.843 392 -334
D-1-17 & 18 5 200 | 0.955 351 -444
After Crack Turns R I
D-1-19 & 20 1 200 | 0.100 793 -365 370 |- -
D-1-21 & 22 3 150 | 0.190 782 -184 43% |-
D-1-23 & 24 1 200 | 0.190 1038 -198 533 -,
D-1-25 & 26 2 100 | 0.296 815 -86 A3
D-1-27 & 28 1 100 | 0.296 786 -163 1S4 |
D-1-29 & 30 1 100 0.410 1044 244 -326
D-1-31 & 32 1 100 0.518 1196 347 -319.[

SCALING FROM MODEL TO PROTOTYPE

Conversion of the results from the photoelastic model! of the turbine disk to 1es_l*s whic® -
correspond to the actual prototype requires the use of a scaling relationship. The “od Ty cqu..- .
tion for X; or K, is

(K10 p = N Ay M(K 1) s

where the subscripts p and m refer to the prototype and model respectively. The: ter
and A; in Eq. (28) are scalmg factors defined as follows:

= the in-plane scaling factor = w,,/w, = 3.409,

where w, is the center-to-center dimension between two adjacent blades on the mude

3.808 in. (96.7 mm) and w, is the corresponding dimension on the prototype and is
(28.38 mm);

the thickness scaling factor = 4,,/#, = 0.111,

where #, is the length of the dovetail slot and is 2.30 in. (58.34 mm) and hy |
th:ckness and is 0.255 in. (6.48 mm); and

tn

A3 = the load scaling factor = P,/P, = 124.5
where P, = 24,900 1b (111 kN) and P,, = 200 1b (890 N).

13
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The scaling equation for the length g of the crack is
a,= a,iry. (32)

These scaling relations assume that the crack in the prototype propagates in a two-
dimensional manner (as through-thickness cracks with a straight front). Inspection of the frac-
ture surface of the lugs which have been pulled from the disk, as shown in Fig. 10, indicate
that the cracks propagate with three-dimensional characteristics. The cracks initiate at a point
and do not extend along the entire thickness of the disk. Instead the crack front exhibits
significant curvature. Because of these differences in the crack shape between the model and
the prototype, the results presented here should be considered as a first approximation. More
exact predictions would require three-dimensional photoeiastic studies to more adeguately
model the crack shape.

Fig. 10 — Typical fracture surface showing the three-
dimensional characieristics of a fatigue crack

Numerical values of K, and X, related to a load on the prototype of P, = 24,900 1b {111
kN) are given in Table 3 as a function of crack iength a,. Inspection of Table 3 shows that
both K, and K vary between narrow limits as the crack grows from 0 to 0.280 in. (7.1 mm}
deep. To assess the influence of the combined effect of K, and Ky, it is appropriate to consider
the total strain energy release rate G, which is given by

G = G.: + Gu, f33)
where, for plane strain,
W2
G, = 1= k7 (34a)
E
and
2
Gp= L Ev Kf {34h)

in which F is the modulus of elasticity and » is Poisson’s ratio.
Substituting Egs. (34) into Eq. (33) gives
1—u?

G = E X e}f’ {351

14
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Table 3 — Stress Intensity Factors K ;and K I
in the Third-Stage Fan-Blade/Disk Pp = 24,900 1b
Centrifugal Load

KI K” a Keﬁ
(ksi 4/in.) | (ksi </in.) (in.) (ksiin.)
Before Crack Turns

3.65 —3.63 0.28 5.15

3.54 =3.60 0.028 5.05 :
11.20 -5.51 0.035 12.48 .
12.12 —4.06 0.054 12.78 P

3.88 —5.59 0.071 10.4%

8.11 =-7.27 0.105 10.89
13.06 —5.18 0.137 14.05
13.75 =7.17 0.182 15.51 "
14.01 -5.64 0.208 15.10
10.00 —8.52 0.247 13.14

8.96 —11.33 0.280 14.44

After Crack Turns

20.23 —9.31 .029 22.27
26.60 —6.26 056 27.33
41.59 —4.39 087 41.82
40.11 —8.31 087 40.96
53.28 12.45 120 54.71
61.03 17.70 151 63.54

where

Korp = VKE + K.

The effective stress intensity factor K, which governs the rate of crackipropagation
da/dN according to Eq. (1), increases from zero to a value of about 14 ksivAn. }afg les crack
extends to a depth of about 0.100 in., as shown in Fig. 11. Continued crack extéH;
0.100 to 0.280 in. occurs at nearly constant K. S

After extending a distance of 0.280 in., the crack approaches the compressive. stress: field
near the upper fillet of the lug. The value of K, decreases and |K | increases until the crack
turns through an angle of about 45 degrees. After turning, K ; becomes dominant and
increases markedly with further crack extension. It is believed that the rate of crack
tion will increase rapidly after the crack turns. ‘ 1

Kess
aga-

ERROR ESTIMATE

In most of the cases examined here, several fringe loops were available for analbsis and
30 or 40 data points could be obtained from regions on the fringe loops where r was not chang-
ing rapidly with respect to #. In these instances, the data could be grouped into different sets.of
ten data points, and multiple determinations of the X field could be made. An example of the
scatter in the determination of K, Ky, and o, is shown in Table 4 for a typical set of data.

il
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Fig. 11 — Effective stress intensity factor K

as a function of crack length g,

Tabie 4 — Vaiues of K‘, K., and o
i ox

Determined with Seven Sets

of Ten Data Points

K, K T ox

535.7 —203.8 296.2

Seven | 456.6 -257.6 321.0

sets | 547.4 -207.5 227.7

of 516.9 —194.8 314.2

data | 444.4 —193.2 369.3

points | 509.7 -195.2 300.1

583.9 -170.0 260.6

7 5121 —203.1 298.4

S, 48.8 26.8 45.1
S/x 0.095 0.132 0.151

Sz 18.4 10.1 17.0
S./% 0.036 0.050 0.057

16
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The mean value x, standard deviation S,, and coefficient of variation S,,/o@ we
mined and are also listed in Table 4. These statistical parameters indicate that erro
dual determinations of K; of about +10 percent and in Kj; of about +13 percent
expected about 68 percent of the time. If the error is due to random causes, then: the
process improves the accuracy. The standard deviation of the mean S, is

S = S/Vn,

where 7 is the number of measurements.

The values of S; and S./x listed in Table 4 illustrate the improvement in [ 'dib'ﬁ;(.):ns
based on mean values. In this case, errors of +3.6, £5.0, and +5.7 percent in K, K
T, can be anticipated 68 percent of the time. Higher errors would be anticipated 3 . per
the time. gt

REFERENCES .

1. V.I. Parks and R.J. Sanford, "Experimental Stress Analysis of the TF-30 Turbm
Third-Stage Fan-Blade/Disk Dovetail Region,” NRL Report 8149, Aug. 1977.

2. P. Paris and F. Erdogan, "A Critical Analysis of Crack Propagation Laws," ASME Tran‘_ D
85, 528-534 (1963). ‘

3. D.G. Smith and C.W. Smith, "Photoelastic Determination of Mixed Mode Stres
Factors", Engrg. Fract. Mech. 4 (No. 2), 357-366 (1972). i

4. P.C. Paris and G.C. Sih, "Stress Analysis of Cracks," ASTM STP No. 381, pp. 30 81, 1965.

5. L.G. Kelley, Handbook of Numerical Methods and Applications, Addison Wesley, Readmg,
Mass., 1967, p. 99.

6. G.R. Irwm discussion of the paper by A.A. Wells and D. Post, "Dynamic Stress Dlstrlbu-
tion Surrounding a Running Crack — A Photoelastic Analysis,” Proc. SESA 16 (No 1)
69-93 (1958), discussion on pp. 93-96.

17




oooo!
agooz
00003
goana4
[jalelon
00e10
aoars
Gao2o
00025
00030
00035
00040
00nas
oaoso
08035
000e0
aaoes
ooeo
aga7s
O0QCE0
00CE8S
noogo
Qo095
00100
5203 J 53
QG110
00115
00120
G125
o0t 30
00135
001 ac
QG145
60150
00158
G140
00165
o070
att 75
00180
anigs
Qo190
00195
onzon
00205
00210
0gz215
og220
coees

Appendix A
PROGRAM MXDMD4

REM A PROGRAM EMPLOYING THE CLASSICAL METHED BF ANALYSIS
REM FOR DETERMINING KlsK2 AND SIGMA SUR @X

REM THE NUMERICAL ANALYSIS IS BASED 8N THF NEWTEN RARHSEN METHOD.
REM

REM CAUTION THETA F8R LOWER LBBP IS NEGATIVE.

PRINT "INPUT THFTA,RADIIIS AND FRINUE GRDFR FROM UFPER LOZF™:
INPUT Ti:2RI:N%

PRINT "INPUT THFTA,RADIUS AND FRINGE FGRDER FRGM LO®EF LOQP"}
INPUT T2,R2.NEZ

FRINT "INPUT MATERIAL FPRINGE vALUVE aAND MODFL THICKNE ESY]
INPUT PsH

PRINT "INPUT INITIAL FRTIMATE OF Ki%:

INPUT Ki

Ke=0

Ka3=0

PRINT"NUMEBER @F ITEFATIENS M IS"3

INPUT M .

REM COMPUTE TRIGC FUNCTIGNS

TIsA«14159%T1/180

T2=3+.14159%T2/180

SO=SORT(O*3.14156%R 11

St =SINCTY)

52=Ce5(T13

S3I=SINCTI D)

Ba=CEStTIz Y

55=SGRT(R*3«1 41 59%RED

S6=SINCTEY

ST=CgS(T2}

SETSIRGTEreY

S59=CBSET2/2

BEM CAMPUTE CCEFFICIENTS @F TAYLOR 'S SERIES.
AlzSisk2/80%%2

AP A*SIRS2/50% %D

Alc(4n SRR+ SI%%P )/ Z0%%D

AAzDxSAX 14 1 +2%42) /SO

AS=2#S3*{ 1 +2%52%%x2+52) /50

ARS({NI®PAHIRRD

Bl=SA%¥D/SS%%D

B2s4%S6%ST/55%%D

BAs{L%STRED+SERAD) / S5R%D

BazD#SE*SA%x (1 +P% 8573/ 585

BS=2%SE*{ [ +2%ST¥#2+57) /55

BR-(NORPs/HY kXD

Cl=2%S1%82/R0%%2

C2s4%(S2%42=-51%%2) /S5Dk%D

Cl=+ %S 1RSP/T0%%P
Ca=Co/801%(ST*{SP+OkSPHRD-PhSH*DI+{ Ok SAIR(SI+P2SI%SEDY
CS=(P/S00%(~S3%{ %S *S0+S1I+( s 5% S4IR( D+ SPRD-Sik%Z+52) )
D1 =2%S56%ST/55%%2
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00230
00235
00240
00245
00250
00255
007260
00265
00270
00275
oo280
00285
002%0
00295
00300
00205
00310
00315
00320
00325
¢0330
00335
00340
60345
00350
00355
00360
00365
00370
00375
00380
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DP=a4%x(STHR2=-S6¥%2) /SS5¥*k2

D=~ 6%kS6RST/S5%%2 H
DA=C2/85)% (S8 (ST+2xST4%2-PkS6¥*¥2) +{ +SxSFIX{(F56+2% 56 :
DE=(2/S9) k(= SRY(A*kSERkST+SAI+( o kSO IR( 2+ S TRAL~SEX%2+57).). |
PRINT e
PRINT * K SUE 1| K SUB 2 SIGMA SUB BXx"

PRINT K1sK2sK3

DIM FC3)oUC32a3)2VE30302Y(353)5%C03)

REM BEGIN ITFRATIVE S@LUTI@N

FgP L=1 TB ™
FCIX=AL*KEXRP+HALRK I RK2+AZMK2* %2 +A XK1 #KI+LASHKPHKI+KI
FU2I=RIKK|%42+B2%kK | K2 +BI% KOk k2 +B4kK 1 kK 3+BShKL*K 3+ K3
FCAY=DI*K 142 +D2*K 1 ¥ K2+D3¥K2* 2 +DAkKI ¥KI+DOKK2RKI
UC121)=2%A1 %K1 +A2KK2+A4%RK3
U122 =A2%K1 +2%A3%K2+A5KK3
UC1,3)=2A4%K1 +ASKK2+2%K3
UC221)=2%B 1 ¥K ]| +BP2*K2+BA%xK3
UC2,2)=B2%K| +2%B3I*K2+B5*K3
UC2,3)=Ba*¥K 1 +RSkK2+20%K3
UC3,13=2%D1%K 1 +D2%K2+D4%K3
UC(3,2)=D2*K 1 +2%D3%K2+D5S%K3
UC3,3)=D4a%K1+D5S*K?2

MAT V= INVIU)

MAT Y=VY*F

MAT X=(=]1)%Y

K1=K1+X{1)

K2=Ko+X(2)

K3=K3+X{(3)

PRINT K13K23K3

NEXT L . e
END ‘ ‘Amww
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Appendix B
PROGRAM MXDMDS

REM A PROGRAM WHICH USES THE LEAST SUUARES METHED T2GETHER WITH THE
REM NEWTON RAPHSGN METHOD TE DETERMINE KisK2 AND SIGMA SUS OX

REM FROM AN @VER DETERMINED SYSTEM OF EQUATIBNS.

REM THE PREGRAM IS WRITTEN T@ ACCEPT 10 DAT& PRINTS.

REM

PRINT "INPUT INITIAL ESTIMATE 2F k1"

INPUT K]

Ke=0

K3=0

PRINT "INPUT DATA F@R THETA (T):, RADIUS (RJ AND FRINGE @RDER C(NM"

F@R J=1 74 10
INPUT TC(JIIsREIISNOD)
TCII=3+14159%TCII /IR0

NEXT J

PRINT "MATERIAL FRINGE VALUE AND MPDFL THICKNESS™:
INPUT PaH4

REM CONVERT UNKNOWNS T@ NORMALIZED FORM.

Ki=sKi®xH4/F

PRINT "SPECIFY NUMBFR OF ITERATIBN3™:

INFUT ©

DIM GOIDY,ACI0, 30,035 102,003530,D4033,003:3) V03, 33000
PRINT " X sSuB 1 K SUB 2 SIGMA SUR Ox*™

FgR I=1 T 10

S001)=2%3«14159%RC1>

S1€IX=SIN(TCI}?

521 x=CasCT(I)

S3CII=SINCTCLYZ2)

L 54€1)=C03CTCIN/2)

ATCII=(SECTI X %¥2/780C12
LVASBER L ESESRTE LIS B VA IS D!
AZ(IN=C4(S2(I)}%x24(S1(I32%xx2}/50(1)
ABA(I)=2%S3LTI*TILTIkCI+2%S2CIIF/SGRTC(SOCI)
ASCIF=2%S3CI I i+2%x{S2{1)##2+52C(I¥}/5QRTL30CI)
ABLIIZENCIYInexp

NEXT I

REM REGIN [TERATIVE SOLUTION.

F@RrR L=t T2 @

El1=0

F@R I=1 T& 10

ECTII=ASCII®K2# KA+ KI*x2-n6{]1}
GCIJ=AICI)*KI%%2+A2 (I I%*KI*KZ+AJ(T IAKDkuP+AAC T TR I KI+EC LY
BT 1 T=ChAICIIRKI+ARCT IRKE+AAL I *#X3

AL 23nAR{ I YK I+2%A3L I 3KO+ASL T KD
ACIa3)=AACI RKI+AS(]I%K2+2%KT
EI=E1+0C1 %n%g

NEXT I

MAT Lh=TRNCA)

MAT Czw®A

MAT DzhxG
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MAT U=INV (C)

MAT V=C=1)%U

MAT X=Vx]D

Ki=KI+X(1)}

KE=KZ2+X(2)

K3=K3+X{2)

PRINT K1%P/HAJK2*P/HASK3*F/Ha
NEXT L

PRINT "RELATIVE ERROR"
PRINT E1

END




